IpCC

INTERGOVERNMENTAL PANEL ON Climate chanee

Climate Change 2022
Mitigation of Climate Change

IPCCAR6 WG3 4%E

$CE Net :l:a"s)l/ﬂF—Ef FD:

Working Group Il contribution to the
Sixth Assessment Report of the
intergovernmental Panef on Climate Change




RS

IPCC AR6 WG3(#£F0K) 4R4BE

115\\ (https://www.carbonbrief.org/in-depth-ga-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change)

“Global net anthropogenic [greenhouse gas] GHG emissions during the decade (2010-19) were higher

than any previous time in human history (high confidence)’
Although at least 90% of global GHG emissions are covered by climate targets, only 55% are covered

by “direct” climate laws.

Following current climate pledges to 2030 would make it “impossible” to limit warming to 1.5C with]
‘o or limited overshoot” — and “strongly increas[e] the challenge” for 2C.

“The global economic benefit of limiting warming to 2C is reported to exceed the cost of mitigation
in most of the assessed literature (medium confidence)’

In pathways limiting warming to 1.5C with no or limited overshoot, global CO2 emissions peak “at
the latest before 2025” and then fall to 48% below 2019 levels in 2030, reaching net-zero by the
“early 2050s". Global GHGs fall 43% by 2030 and 84% by 2050.

All scenarios limiting warming to 2C or below include “greatly reduced” fossil fuel use, with unabated

coal being ‘completely” phased out by 2050.
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“The deployment of carbon dioxide removal (CDR) to counterbalance hard-to-abate residual ]
emissions is unavoidable if net-zero CO2 or GHG emissions are to be achieved.

Accelerated climate action is “critical” to achieving sustainable development.
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SPM Emission Pathways

Projected global GHG emissions from NDCs announced prior to COP26 would make it likely that
warming will exceed 1.5°C and also make it harder after 2030 to limit warming to below 2°C.

a. Global GHG emissions b. 2030 ¢. 2050 d. 2100

B
Palicy
SeSsments

GHG emissions (GICO-eq yr ')

-10 | \
2000 2015 2020 2025 2030 2035 2040 2045 2050

Modelled pathways: Policy assessments for 2030: Percentile:
I Trend from implemented policies ~~— Policies implemented by the end of 2020 95"
B8 Limit warming to 2°C (>67%) or return warming to B NDCs prior to COP26, 75"

1.5°C (50%) after a high overshoot, NDCs until 2030 unconditional elements I _—
s==== Limit warming to 2°C (>67%) s==== NDCs prior to COP26, §n
S Limit warming to 1.5°C (>50%) with no or limited overshoot including conditional elements

-1 Past GHG emissions and uncertainty for 2015 and 2019
(dot indicates the median)

Figure SPM.4: Global GHG emissions of modelled pathways (funnels in Panel a. and associated bars in
Panels b, ¢, d) and projected emission outcomes from near-term policy assessments for 2030 (Panel b).
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Figure SPM.S: Illustrative Mitigation Emissions Pathways (IMPs) and net zero CO: and GHG
emissions strategies
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Percentage of Scenarios

SFIFMRIRNF—ROEL BV 535 HINet ZeroF|ZE R A

a. IMP characteristics: primary energy
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Figure 3.16: Primary energy use and net emissions at net zero year for the different IMPS
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Modelled mitigation pathways that limit warming to 1.5°C, and 2°C, involve deep, rapid and
sustained emissions reductions.
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Cross-Chapter Box 3 Figure 1: Selected global CO: emissions trajectories with similar shape and
different net zero CO: date (Panel a), different shape and similar net zero COz date (Panel b), and similar
peak warming, but varying shapes and net zero CO: dates (Panel c). Funnels show pathways limiting
warming to 1.5°C with no or limited overshoot (light blue) and likely limiting warming to 2°C (beige).

Historic CO2 emissions from Chapter 2.2 (EDGAR v6).
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CDR (BECCS. Land (Z£#f). DACCS)

options for reduced and negative emissions technologies
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Table 6.2 Geologic storage potential across underground formations globally. These represent order-of-
magnitude estimates. Data: (Selosse and Ricci 2017)

Gt-CO2
Reservoir Type Africa Ausiralia | Canada | China | CSA | EEU | FSU | India | MEA | Mexico | ODA USA | WEU
Enhanced Qil 3 0 3 1 [ 2 15 0 I8 0 1 g 0
Recovery
Depleted oil and gas 20 ] 19 1 EE] 2] 1o 0 252 22 47 32 37
fields
Enhanced Coalbed 8 30 16 16 0 2 26 [] 0 0 b ] 90 12
Methane Recovery
Deep saline aquifers 1000 500 667 500 | 1000 250 | 1000 500 500 250 1015 | 1000 250

CSA: Central and South Amenca, EEU: Eastem Furope, FSU: Former Soviet Umon, MEA: Middle East, ODA:
Other Asia (except China and India). WEU: Western Europe.

Table 6.3 Costs and efficiency parameters of CCS in electric power plants. Data: (Muratoriet al. 2017a)

Capital Efficiency CO, Capture CO, Avoided Cost
Cost [USD | [%] Cost[USD ton- | [USD ton-CO:"]
kw] €O,

Coal (steam plant) + CCS 5800 28% 63 88

Coal (IGCC) + CCS 6600 32% 61 106

Natural Gas (CC) + CCS 2100 42% 91 33

0il (CC) + CCS 2600 39% 105 95

Biomass (steam plant) + CCS 7700 18% 72 244

Biomass (IGCC) + CCS 8850 25% 66 242

Table 6.4 The costs of electricity generation, hydrogen production, and second-generation liquid fuels

production from biomass in 2020. These costs are adapted from (Daioglou et al. 2020), (Bhave et al. 2017),

(NREL 2020a), (Lepage et al. 2021), (Witcover and Williams 2020), (NREL 2020b)

100FE LI LEIFBARELESh TS (REEHE
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order-of-magnitude&ZE > TLVSFEIEKFHD
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CCITHTULWACcsaRME,. BREEZDND,

CCSTTERbioRBEDARMIEDHEEZ NS,

Unit Low Median High
Bioelectricity with CCS USD/MWh 74 86 160
Bioelectricity without CCS USD/MWh 66 84 112
Biohydrogen with CCS* UsD/kg 1.63 2.37 241
Biohydrogen without CCS* USD/kg 1.59 1.79 237
Liquid biofuels with CCS USD/gge 1.34 420 7.85
Liquid biofuels without CCS USD/gge 1.15 4.00 7.60

* Using cellulosic feedstocks




Cost &
Benefit

Intangible
Benefit:
Welfare
Well-Being

Many options available now in all sectors are estimated to offer substantial potential to reduce
net emissions by 2030. Relative potentials and costs will vary across countries and in the longer

term compared to 2030.
Mitigation options

Wind energy

Solar energy

Bioelectricity

Hydropower

E Geothermal energy

& | Nuclear energy

Carbon capture and storage (CCS)
Bioelectricity with CCS

Reduce CH. emission from coal mining
L Reduce CH. emission from oil and gas

[ Carbon sequestration in agriculture
Reduce CH. and N0 emission in agriculture
§ Reduced conversion of forests and other ecosystems

p le forest
Reduce food loss and food waste
L Shift to balanced, sustainable healthy diets

[ Avoid demand for energy services
Efficient lighting, appliances and equipment
New buildings with high energy performance
Onsite renewable production and use
Improvement of existing building stock

. Enhanced use of wood products

Buildings

[ Fuel efficient light duty vehicles
Electric light duty vehicles
Shift to public transportation
Shift to bikes and e-bikes
Fuel efficient heavy duty vehicles
Electric heavy duty vehicles, incl. buses
Shipping - efficiency and optimization
Aviation — energy efficiency

_ Biofuels

Transport

[ Energy efic
Material efficiency
Enhanced recydling

Fuel switching (electr, nat. gas, bio-energy, Hy)
g Feedstock decarbonisation, process change
Carbon capture with utilisation (CCU) and CCS
Cementitious material substitution
L Reduction of non-CO; emissions

[ Reduce emission of fluorinated gas
£ | Reduce G emissions from sold waste
Reduce CH. emissions from wastewater

2y

ion to net

GICOreqyr'

(2030) GtCOeqyr’
4 6

lifetime cost of options:
I Costs are lower than the reference
I 0-20 (USD tCO-eq")
I 20-50 (USD tC0;-eq")
I 50-100 (USD tCO--eq")
I 100-200 (USD tCO-eq")
I Cost not allocated due to high
variability or lack of data

——— Uncertainty range applies to
the total potential contribution
to emission reduction. The
individual cost ranges are also
associated with uncertainty
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Figure SPM.7: Overview of mitigation options and their estimated ranges of costs and potentials in 2030.
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Learning Rate

PV. WT. Battery Cost Down

The unit costs of some forms of renewable energy and of batteries for passenger EVs have fallen,

and their use continues to rise.
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Figure SPM.3: Unit cost reductions and use in some rapidly changing mitigation technologies
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Hydrogen Gas

Share of hydrogen in final energy consumption
(scenarios likely to limit warming to 2°C or lower)
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Box 12.5, Figure 1 Fraction of hydrogen (H2, red) in total final energy consumption, and those for each
sector. Hinges represent the interquartile ranges and whiskers extend to 5 and 95 percentiles.
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Table 6.7 Key performance and cost characteristics of different non-electric hydrogen production

technologies (including CCS)
(1) CSIRO 2021; (2) IEA 2020; (3) IRENA 2019; (4) Hydrogen Council 2020; (5) CCC 2018; (6) BEIS 2021; (7) Ishaq et al. 2021; () Al-Mahtani et al.
2021; 9) IEA 2019
Technology LHV Efficiency (%) | Carbon Intensity Cost Estimates’ (USD
(kgeo2 (kgm)™) (kgm)™)
Current | Long-term Current Long-term
SMR 650 7459 1.0-3.669 1.0- 1.5-2.6©
2.70.2345)
Advanced gas reforming - 81-8469 | 0.9-29C) 1.3-2.1©9 1.2-3.469
Hydrogen coal | 54 540) 2.1-5.569 1.8- 2.4-330
| gasification 3.1023439)
Hydrogen from biomass | 53.6 40-60% Potential to | 4.9¥ 29-5969
gasification achieve-
Negative
emission®®
*USD per GBP exchange rate: 072 (August 2021); LHV: Lower Heating Values; Long-term refers to 2040 and 2050 according to different

references

Table 6.8 Efficiency and cost characteristics of electrolysis technologies for hydrogen production

(1) CSIRO 2021; (2) IEA 2020; (3) IRENA 2019; (4) Hydrogen Council 2020; (5) CCC 2018; (6) BEIS 2021; (7) IEA 2019; (8) Christensen 2020

Technology LHV Efficiency (%) CAPEX (USD kW.!) | Cost Estimates"* (USD
(kgm)™)
Current Long-term | Current® | Long- Current Long-
@568 term @ term
Alkaline Electrolysers | 58-77%:25%% | 70-82 500-1400 | 200-700 | 2.3-6.9%%%) | 09—
3.9G.5
PEM 54-7202589 | 67-82 1100- 200-900 | 3.5-9.30458 [ 22—
1800 7.269
SOEC 74-818%9 [ 77-92 2800- 500— 420 (6392
5600 1000

*USD per GBP exchange rate: 0.72 (August 2021); + The cost of hydrogen production from electrolysers is highly dependent on the
technology, source of electricity, and operating hours, and here some values based on the assumptions made in the references are provided.
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Demand-side mitigation can be achieved through changes in socio-cultural factors, infrastructure
design and use, and end-use technology adoption by 2050.
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' The presentation of choices to consumers, and the impact of that presentation on consumer decision-making.
* Load management refiers to demand-side flexibility that cuts across all sectors and can be achieved throwgh incentive design like time of use peicingimonitoring

by antificial intelligence, diversification of storage faclites, etc.

The impact of demand-side mitigation on electricty sector emissions depends on the baseline carbon intensity of electicity supply, which is scenario dependent.
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W Additional electrification (+60%)
Addtional emissions from increased
elecincity generation to enable the
end-use sectors’ substitution of electricity
for fossil fuels, e.g, via heat pumps and
electric cars [Table SM5.3; 6.6)
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Cross-Chapter Box 8, Figure 1: Carbon Dioxide Removal taxonomy.

Methods are categorised based on removal process (grey shades) and storage medium (for which timescales of storage are given, yellow/brown shades). Main
implementation options are included for each CDR method. Note that specific land-based implementation options can be associated with several CDR methods,
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Figure Cross-Chapter Box FINANCE.1: Companson of recent studies that est

lMajor studies are World Bank (2010), Chapagain et al. (5020) UNEP (2016
Gonzilez-Eguino (2019). The solid-coloured bars are based on RCP2.6 ar



