A0404-01	反応器の緊急対応設備は常に円滑に稼働可能なように維持せよ
本文	発熱を伴う重合反応の設備では停電等の非常事態に対応した設備・体制を整備しておき、
	常に作動可能なように維持しておくこと
リスクの種類	暴走反応、火災 関連目次:章節
理由(何故)	発熱を伴う重合反応装置では、停電などの非常時に、冷却水と攪拌機が停止すると暴走
	反応を起こし急激な圧力上昇により、内容物の噴出、反応機の破損、火災の誘発を起こす
	恐れがある。
方策	1. 保安電源専用の発電機を新設するか、別系統からの2系統受電を行う。
	2. 反応器攪拌機や抜き出しポンプ、重合禁止剤挿入ポンプ、冷却水ポンプ等重要な電気
	機器の電源系統を二重化する。例えば、攪拌機停止に対しては、下部からの窒素バブリ
	ングを検討することも必要である。
	3. エンジンと電動機の共用型の消火栓用ポンプを新設し、非常時の反応器冷却が可能な
	ようにする。
	4. 緊急時用のポンプなどは、非常事態発生時に直ちに稼働できるよう定期的にチェックす
	న 。
	5. 重合禁止剤用にタンクを設け窒素加圧が可能なように配慮する。
	6. 最高使用圧以下で作動するする破裂板あるいは安全弁を設置する。取り出しノズルが
	閉塞しないよう 対策を講じること。
	7. 破裂板、安全弁あるいは大気放出管の出口にバッファタンクを設置し、内容物の噴出を
	抑えるようにする。バッファタンク内は窒素置換しておくこと。
│事故例 │	1995 年 10 月、構内の一部が停電し、発泡ポリスチレン重合器の冷却水と攪拌機が停止し
	た。重合反応中の反応缶内の圧力が上昇した。重合禁止剤の投入ポンプが動かなかった
	ため、重合禁止剤の投入に失敗した。ただちに、重合器払い出し弁を開いたが粘性が高く
	排出できなかった。この間、圧力は通常の0.05MPaGから0.17MPaGに上昇したため、破裂
	防止のため大気放出管の弁を開放したが、放出管の先から噴出したスチレン重合物が着
	火し、近くにあった電気ケーブル等が焼失した。
	これらの事故の原因は以下のとおりであった。
	│ ①停電の原因は、電源幹線の断路器の絶縁油が劣化して地絡したことによる。 │ ②重合停止剤投入用のポンプの作動不良は点検整備不十分による。
	②火災の原因は、大気放出時の静電気とされた。
 法的参考事項	本重合反応器のような大気圧以上の反応器は第1種圧力容器に該当する。労働安全衛生
AHJO 17 F.K	法施行例 第1条第5項ロ参照。構造等はボイラーおよび圧力容器安全規則による。
	また、発熱反応を起こす反応器は特殊化学設備(労働安全衛生規則第4条3項)として、同
	規則第273条の2~5に規定される予備動力源等の設備を具備する必要がある。
	高圧ガス保安法コンビナート保安規則第 5 条第 1 項 25 号及び 26 号、27号(反応器が特
	 殊反応設備の場合の内部反応監視装置、危険な状態になることを防止する措置、緊急時
	に速やかに遮断する措置、これらについての例示基準)、第5条第1項50号(停電等によ
	り設備の機能が失われない措置、これらについての例示基準) (出典 JST 失敗事例)